a,2(x−1)−3x(x−5)=21
⇔2x−2−3x2+15x−21=0
⇔−3x2+17x−23=0
⇔−3(x2+17x+4298)+2401=0
⇔−3(x+217)2=−2401
⇔(x+217)2=6401
⇒⎣⎢⎢⎡x+217=6401x+217=−6401
⇒⎣⎢⎢⎡x=6401−217x=−6401−217
b,(x+3)−(x−4)(x+8)=1
⇔x+3−x2−4x+32−1=0
⇔x2−3x+34=0
⇔(x2−3x+49)+4127=0
⇔(x−23)2=−4127
Ta có:
(x−23)2≥0∀x
Vậy pt vô nghiệm