a, cho tan a=3 . tính gt của biểu thức
\(\dfrac{\sin a\cos a+\cos^2a}{2\sin^2a-\cos^2a}\)
b, c/m đẳng thức
\(\cot\left(\dfrac{\pi}{2}-x\right)\cos\left(\dfrac{\pi}{2}+x\right)+\dfrac{\sin\left(\pi-x\right)\cot x}{1-\sin^2x}=\cos x\)
Câu a)
Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)
Do đó:
\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)
\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)
Câu b)
Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)
\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)
Và:
\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)
Ta có đpcm.
cho (O) 2 dây AB và CD vuông góc với nhau tại M. Gọi H và K lần lượt là hình chiếu của A và C trên BD. Đường thẳng AH cắt CD tại E, đường thẳng CK cắt AB tại F. chứng minh ACFE là hình thoi
Bài 1.41 (SBT trang 44)
Cho bốn điểm \(A\left(-2;-3\right);B\left(3;7\right);C\left(0;3\right);D\left(-4;-5\right)\)
Chứng minh rằng hai đường thẳng hàng AB và CD song song với nhau ?
Cho x, y, z > 0 thỏa mãn \(x^2+y^2+z^2\ge1\)
Chứng minh: \(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge1\)
Mong mọi người giúp ạ--..Em sẽ đội ơn cả đời
Cho các số thực dương x,y,z \(\in [0;1] \)Tìm Max
\(T=x+y^{2017}+z^{2018}-xy-yz-zx\)
Bài 2.17 (SBT trang 91)
Tam giác ABC có AB = 6cm, AC = 8cm, BC = 11cm
a) Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và chứng tỏ rằng tam giác ABC có góc A tù
b) Trên cạnh AB lấy điểm M sao cho AM = 2cm và gọi N là trung điểm của cạnh AC. Tính \(\overrightarrow{AM}.\overrightarrow{AN}\) ?
tìm tọa độ đỉnh và giao điểmvới các trục tọa độ của đò thị hảm số y=x2-2x+5
giải các phương trình sau
a)\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
b)\(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)
c)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
d)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)
cho a,b là 2 số dương thỏa mãn : \(\sqrt{ab}=\dfrac{a+b}{a-b}\)
tìm Min \(P=ab+\dfrac{a-b}{\sqrt{ab}}\)
Giúp mk với ạ, mai mk cần rồi
Trong Oxy cho A (1,2) B (-2,1) C(0,2)
a. Chứng tỏ A, B, C không thẳng hàng
b. Tìm tọa độ trọng tâm G của tam giác ABC
c. Tìm tọa độ điểm N sao cho A là trọng tâm của tam giác ABC
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến