Đáp án:
Giải thích các bước giải:
Bài 1 :
`Q = x^2 + 2xy + y^2 - 6x - 6y - 5`
`<=> Q = ( x^2 + 2xy + y^2 ) - ( 6x + 6y ) - 5`
`<=> Q = ( x + y )^2 - 6( x + y ) - 5`
`<=> Q = ( -9 )^2 - 6 . ( -9 ) - 5`
`<=> Q = 81 - ( -54 ) - 5`
`<=> Q = 130`
Vậy `Q = 130`
Bài 2 :
Đặt `9x^2 - 12x = A`
`=> A = 9x^2 - 12x + 4 - 4`
`<=> A = ( 9x^2 - 12x + 4 ) - 4`
`<=> A = ( 3x - 2 )^2 - 4`
Có :
`( 3x - 2 )^2 ≥ 0 ∀x` ( với mọi x )
`<=> ( 3x - 2 )^2 - 4 ≥ -4`
`<=> A ≥ -4`
`A_min = -4` khi `( 3x - 2 )^2 = 0`
`<=> 3x - 2 = 0`
`<=> 3x = 2`
`<=> x = 2/3`
Vậy GTNN của A là `-4` khi `x = 2/3`