Cho x, y, z là những số thực tùy ý.
Chứng minh rằng :
\(\left|x-z\right|\le\left|x-y\right|+\left|y-z\right|,\forall x,y,z\)
Lời giải
áp dụng
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(\forall a,b\) đẳng thức khi ab>=0 nghĩa là a, b cùng "dấu"
\(VP=\left|x-y\right|+\left|y-z\right|\ge\left|\left(x-y\right)+\left(y-z\right)\right|=\left|x-z\right|=VT\)
\(\Rightarrow\left|x-z\right|\le\left|x-y\right|+\left|y-z\right|\)
Đẳng thức khi (x-y)(y-z)>=0
Bài 13 (SBT trang 106)
Cho x, y, z là những số thực tùy ý. Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó :
\(y=\sqrt{x-1}+\sqrt{5-x}\)
Bài 12 (SBT trang 106)
Tìm giá trị lớn nhất của hàm số \(y=4x^3-x^4\) với \(0\le x\le4\)
Bài 11 (SBT trang 106)
Tìm giá trị nhỏ nhất của hàm số :
\(y=\dfrac{4}{x}+\dfrac{9}{1-x}\) với \(0< x< 1\)
Bài 10 (SBT trang 106)
Cho a, b, c, d là những số dương.
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
Bài 9 (SBT trang 106)
\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)
Bài 8 (SBT trang 106)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Bài 7 (SBT trang 106)
\(a^2b+\dfrac{1}{b}\ge2a\)
Bài 6 (SBT trang 106)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\)
Bài 5 (SBT trang 106)
\(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
Bài 4 (SBT trang 106)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến