5 ) $\frac{\sqrt[]{3}^2+\sqrt[]{39}^2}{\sqrt[]{91}^2-\sqrt[]{(-7)}^2 }$
= $\frac{|3|+|39|}{|91|-|-7|}$
= $\frac{3+39}{91-7}$
= $\frac{42}{84}$
= $\frac{1}{2}$
10 ) ($\frac{3}{5})^{10}$.( $\frac{5}{3})^{10}$ - $\frac{13^4}{39^4}$ +$2014^{0}$
= ($\frac{3}{5}$. $\frac{5}{3})^{10}$ -$\frac{1}{81}$ +1
= 1-$\frac{1}{81}$+1
= 2- $\frac{1}{81}$
= $\frac{161}{81}$
11 ) 10$\sqrt[]{0,01}$. $\sqrt[]{\frac{16}{9}}$+3$\sqrt[]{49}$ -$\frac{1}{6}$$\sqrt[]{4}$
= 1. $\frac{4}{3}$+21- $\frac{1}{3}$
= 1+21
=22
12 ) $\frac{2^4.2^6}{(5^5)^2}$ $\frac{2^5.15^3}{6^3.10^2}$
= 1 - $\frac{32.3375}{216.100}$
= 1- 5
=-4