a)
$\sqrt{x}$ = 5 ⇔ $(\sqrt{x})^{2}$ = 5 ⇔ x = 5 (ĐKXĐ : x ≥ 0)
b)
$\sqrt{3x}$ = 2 ⇔ $(\sqrt{3x})^{2}$ = 2 ⇔ 3x = 5 ⇔ x = $\frac{5}{3}$ (ĐKXĐ : x ≥ 0)
c)
$\frac{3}{4}$$\sqrt{2x}$ = 1 ⇔ $(\sqrt{2x})$ = $\frac{4}{3}$ ⇔ $(\sqrt{2x})^{2}$ = $\frac{16}{9}$
⇔ 2x = $\frac{16}{9}$ ⇔ x = $\frac{8}{9}$
d)
$\sqrt{x}$ > 2 ⇔ $(\sqrt{x})^{2}$ > 4 ⇔ x > 4 (ĐKXĐ : x ≥ 0)
e)
2$\sqrt{x}$ < 1 ⇔ $\sqrt{x}$ < $\frac{1}{2}$ ⇔ $(\sqrt{x})^{2}$ < $\frac{1}{4}$ ⇔ x < $\frac{1}{4}$
g)
$\sqrt{x+1}$ < 3 ⇔ $(\sqrt{x+1})^{2}$ < 9 ⇔ x + 1 > 9 ⇔ x > 8 (ĐKXĐ : x + 1 ≥ 0)
h)
$\sqrt{4x-3}$ = $\sqrt{x+2}$ ⇔ $(\sqrt{4x-3})^{2}$ = $(\sqrt{x+2})^{2}$ ⇔ 4x-3 = x+2 ⇔ x = $\frac{5}{3}$
i)
$\sqrt{({3x-1})^{2}}$ = $\sqrt{({x-2})^{2}}$ ⇔ $|3x-1|$ = $|x-2|$
⇔ 3x - 1 = -(x - 2) hay 3x - 1 = x - 2
⇔ x = $\frac{5}{4}$ hay x = $\frac{-1}{2}$