a, Để C xác định
$\Leftrightarrow x\neq\pm1$
b, $C=(\dfrac{x^2+x}{x^3+x^2+x+1}+\dfrac{1}{x^2+1}):(\dfrac{1}{x-1}-\dfrac{2x}{x^3-x^2+x-1})$ $(x\neq\pm1)$
$C=(\dfrac{x^2+x}{x^2(x+1)+(x+1)}+\dfrac{1}{x^2+1}):(\dfrac{1}{x-1}-\dfrac{2x}{x^2(x-1)+(x-1)})$
$C=\dfrac{x(x+1)}{(x+1)(x^2+1)}+\dfrac{1}{x^2+1}):(\dfrac{1}{x-1}-\dfrac{2x}{(x^2+1)(x-1)})$
$C=\dfrac{x+1}{x^2+1}:\dfrac{x^2+1-2x}{(x-1)(x^2+1)}$
$C=\dfrac{x+1}{x^2+1}\cdot\dfrac{(x-1)(x^2+1)}{(x-1)^2}$
$C=\dfrac{x+1}{x-1}$
Vậy $C=\dfrac{x+1}{x-1}$ với $x\neq\pm1$
c, $C=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}$
Để C nguyên
$\dfrac{2}{x-1}$ nguyên
`⇒x-1∈Ư(2)={±1;±2}`.
· $x-1=1⇒x=2(tm)$
· $x-1=-1⇒x=0(ktm)$
· $x-1=2⇒x=3(tm)$
· $x-1=-2⇒x=-1(ktm)$
Vậy để C nguyên thì `x\in{2;3}`.