Đáp án:
`S=\{3/2\}`
Giải thích các bước giải:
`ĐKXĐ:x\ne 2;x\ne -2;x\ne 0`
`2/(x^2-4)-(x-1)/(x(x-2))-(x-4)/(x(x+2))=0`
`⇔2/((x-2)(x+2))-(x-1)/(x(x-2))-(x-4)/(x(x+2))=0`
`⇔(2x)/(x(x-2)(x+2))-((x-1)(x+2))/(x(x-2)(x+2))-((x-4)(x-2))/(x(x+2)(x-2))=0`
`⇔2x-(x-1)(x+2)-(x-4)(x-2)=0`
`⇔2x-(x^2+2x-x-2)-(x^2-2x-4x+8)=0`
`⇔2x-(x^2+x-2)-(x^2-6x+8)=0`
`⇔2x-x^2-x+2-x^2+6x-8=0`
`⇔2x^2-7x+6=0`
`⇔2x^2-4x-3x+6=0`
`⇔2x(x-2)-3(x-2)=0`
`⇔(x-2)(2x-3)=0`
\(⇔\left[ \begin{array}{l}x-2=0\\2x-3=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=2(KTM)\\x=3/2(TM)\end{array} \right.\)
Vậy `S=\{3/2\}`