f(x)+g(x)+g(x)f(x)+g(x)+g(x)
=2x4−x3+x−3+5x5−x3+5x2+4x+2+3x5+x2+x+1+2x3+3x4=2x4-x3+x-3+5x5-x3+5x2+4x+2+3x5+x2+x+1+2x3+3x4
=(5x5+3x5)+(2x4+3x4)+(2x3−x3−x3)+(5x2+x2)+(x+4x+x)−3+2+1=(5x5+3x5)+(2x4+3x4)+(2x3-x3-x3)+(5x2+x2)+(x+4x+x)-3+2+1
=8x5+5x4+6x2+6x=8x5+5x4+6x2+6x
f(x)−g(x)−h(x)f(x)-g(x)-h(x)
=2x4−x3+x−3+5x5−(−x3+5x2+4x+2+3x5)−(x2+x+1+2x3+3x4)=2x4-x3+x-3+5x5-(-x3+5x2+4x+2+3x5)-(x2+x+1+2x3+3x4)
=2x4−x3+x−3+5x5+x3−5x2−4x−2−3x5−x2−x−1−2x3−3x4=2x4-x3+x-3+5x5+x3-5x2-4x-2-3x5-x2-x-1-2x3-3x4
=(5x5−3x5)+(2x4−3x4)+(x3−x3−2x3)−(5x2+x2)+(x−4x−x)−3−2−1=(5x5-3x5)+(2x4-3x4)+(x3-x3-2x3)-(5x2+x2)+(x-4x-x)-3-2-1
=2x5−x4−2x3−6x2−4x−6