Cho a,b,c >0 và a+b+c=1 chứng minh rằng
\(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt{3}\left(ab+bc+ca\right)\)
Ta có: \(\left\{{}\begin{matrix}3\sqrt{3}a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt{3}a\left(1\right)\\3\sqrt{3}b^2+\sqrt{b}+\sqrt{b}\ge3\sqrt{3}b\left(2\right)\\3\sqrt{3}c^2+\sqrt{c}+\sqrt{c}\ge3\sqrt{3}c\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được
\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\sqrt{3}\left[\left(a+b+c\right)-\left(a^2+b^2+c^2\right)\right]\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\dfrac{3\sqrt{3}\left[1-\left(a^2+b^2+c^2\right)\right]}{2}\)
\(=\dfrac{3\sqrt{3}\left[1-\left(a+b+c\right)^2+2\left(ab+bc+ca\right)\right]}{2}\)
\(=3\sqrt{3}\left(ab+bc+ca\right)\)
\(\RightarrowĐPCM\)
Tìm min:
\(\dfrac{1}{1+1,5a}+\dfrac{1}{1+1,5b}\) với a, b > 0 và \(\sqrt{ab}=\dfrac{4}{3}\).
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
tìm tất cả các giá trị k để bpt: \(|x^2-x|\le x+k\) có 2011 nghiệm nguyên
Giúp mk vs mai mk có Toán rồi
1, Với a;b;c > 0 T/m a;b > 1 C/m :\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
2, với a;b > 1 C/m : \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Cho đa thức f(x) thỏa mã điều kiện :
x.f(x-2) = (x-4) .f(x)
Chứng minh rằng đa thức f(x) có ít nhất 2 nghiệm .
giúp mình nhé các bạn !!!
cho 2 số tự nhiên a, b thỏa mãn đk a+b=2005 tìm gtln của tích ab
cho a,b,c > 0 và a+b+c=4
tính max A= \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Tìm giá trị nhỏ nhất của biểu thức A = \(3x^2-\dfrac{9x}{4}+\dfrac{3}{16x}\) với x dương.
Bài 1:Cho 0<=a;b;c<=2.a+b+c=3
CM:3<=a^3+b^3+c^3-3(a-1)(b-1)(c-1)<=9
Bài 2: Cho -1<=a;b;c<=2.a+b+c=0.CM:
a,a^2+b^2+c^2<=6
b,2abc<=a^2+b^2+c^2<=2abc+2
c,a^2+b^2+c^2<=8-abc
Chứng minh |a|-|b|< |a+b|<|a|+|b|
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến