Cho các số dương a,b,c tm:
a+b+c=1. Tìm Max M=\(\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)
@Akai Haruma
Lời giải:
Ta có:
\(M=\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)
\(M=\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}+9\sqrt{abc}\)
Áp dụng BĐT Bunhiacopxky:
\([\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}]^2\leq (a+b+c)(a+bc+b+ac+c+ab)\)
\(\Leftrightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \sqrt{1+ab+bc+ac}\)
Theo hệ quả của BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)
\(\Rightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \frac{2\sqrt{3}}{3}(1)\)
AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\Rightarrow 9\sqrt{abc}\leq \sqrt{3}(2)\)
Từ (1);(2) suy ra: \(M\leq \frac{2\sqrt{3}}{3}+\sqrt{3}=\frac{5\sqrt{3}}{3}\)
Vậy \(M_{\max}=\frac{5\sqrt{3}}{3}\) . Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
Cho a,b,c là số dương. CMR
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2+2x0=
Rút gọn biểu thức
a, 3(x-y)^2 - 2(x+y)^2 - (x-y)(x+y)
b, 2(2x+5)^2 - 3(4x+1)(1-4x)
Tìm x, biết
a, x(4x^2-1)=0
b, 3(x-1)^2 - 3x(x-5) - 2 =0
c, x^3 - x^2 - x + 1 = 0
d, 2x^2 - 5x - 7 =0
Tập hợp E={ a;b;c;d;e} có bao nhiêu tập hợp con
a) ghi chi tiết các tập chứa 3 phần tử
b) ghi chi tiết các tập có 4 phần tử
cho tam giác ABC, M là trung điểm của AB, D là trung điểm của BC. Điểm N thuộc AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\). K là trung điểm của MN. Phân tích \(\overrightarrow{AK}\) và \(\overrightarrow{KD}\) theo hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho \(\overrightarrow{a}\) , \(\overrightarrow{b}\) không cùng phương , \(\overrightarrow{x}\) = -2 . \(\overrightarrow{a}\) + \(\overrightarrow{b}\) . Vec-tơ cùng hướng với \(\overrightarrow{x}\) là
A. 2. \(\overrightarrow{a}\) - \(\overrightarrow{b}\)
B. - \(\overrightarrow{a}\) + \(\dfrac{1}{2}\) . \(\overrightarrow{b}\)
C. 4. \(\overrightarrow{a}\) + 2. \(\overrightarrow{b}\)
D. - \(\overrightarrow{a}\) + \(\overrightarrow{b}\)
cho hàm số y=x2-3x+2. Xét (d): y=x+m. tìm m để (d) cắt (p) tại 2 điểm phân biệt
P = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTNN của P
cho tam giác ABC , bên ngoài vẽ các hbh ABIF,BCPQ,CARS. Chứng minh : \(\overrightarrow{RF}+\overrightarrow{IQ}+\overrightarrow{PS}=\overrightarrow{0}\)
Bài 1: tìm m để 2 đường thẳng sau vuông góc
△1: mx+y+8=0 và △2: x-y+m=0
Bài 2: tìm m để 3 đt sau đồng quy
△1: 2x+y-4=0 ; △2: 5x-2y+3=0 ; △3: mx+3y-2=0
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến