Giải thích các bước giải:
a.Để B có nghĩa
$\rightarrow \begin{cases}x+1\ne 0\\ x-1\ne 0\\x\ne 0\end{cases}$
$\rightarrow \begin{cases}x\ne -1\\ x\ne 1\\x\ne 0\end{cases}
b.$B=(\dfrac{x^2+1}{x+1}-1)(\dfrac{4}{x-1}-\dfrac{2}{x})$
$\rightarrow B=\dfrac{x^2+1-(x+1)}{x+1}.\dfrac{4x-2(x-1)}{x.(x-1)}$
$\rightarrow B=\dfrac{x^2-x}{x+1}.\dfrac{2x+2}{x.(x-1)}$
$\rightarrow B=\dfrac{x(x-1)}{x+1}.\dfrac{2(x+1)}{x.(x-1)}$
$\rightarrow B=2$