+)P(1) = 2
<=> 2=1^3 + a1^2 +b1 +c
<=> 2=1+a+b+c; (1)
+)P(2) = 4
<=> 4=2^3 + a.2^2 +b.2 +c
<=>4=8+4a+2b+c; (2)
+)P(3) = 6
<=>6=3^3 + a.3^2 +b.3 +c
<=> 6=9+9a+3b+c (3);
Từ (1) (2) (3) ta có hpt:
2=1+a+b+c
{ 4=8+4a+2b+c
6=9+9a+3b+c
.
<=> a=3
b=-1,4;
c=1,2;
Vậy P(x)=x³+3x²-1,4x+1,2;
P(0)=0³+3.0²-1,4.0+1,2=1,2;
P(4)=4³+3.4²-1,4.4+1,2=6,8;
Khi đó P(0) + P(4)=1,2+6,8=8