Cho \(\left( {{\Delta _1}} \right):\,\,\left\{ \begin{array}{l}x = 1 - t\\y = t\\z = 4t\end{array} \right.,\,\,\left( {{\Delta _2}} \right):\,\,\left\{ \begin{array}{l}x = 2 - t'\\y = 4 + 2t'\\z = 1\end{array} \right.\); \(\left( P \right):\,\,y + 2z = 0\). Lập phương trình \(\left( d \right) \subset \left( P \right)\) và \(\left( d \right)\) cắt cả \(\left( {{\Delta _1}} \right)\) và \(\left( {{\Delta _2}} \right)\).
A.\(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z = 5t\end{array} \right.\)
B.\(\left\{ \begin{array}{l}x = 1 + 4t\\y = - 2t\\z = t\end{array} \right.\)
C.\(\left\{ \begin{array}{l}x = t\\y = 3 + 2t\\z = 5t\end{array} \right.\)
D.\(\left\{ \begin{array}{l}x = 6 - 2t\\y = t\\z = 3 + 6t\end{array} \right.\)