Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình \(f\left( x \right) = 1\) là: A.\(0\) B.\(3\) C.\(1\) D.\(2\)
Phương pháp giải: Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\). Giải chi tiết:Số nghiệm của phương trình \(f\left( x \right) = 1\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 1\). Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 3 điểm phân biệt. Vậy phương trình \(f\left( x \right) = 1\) có 3 nghiệm phân biệt. Chọn B.