Đáp án đúng: B
Giải chi tiết:Xét hàm số \(y = f\left( {\left| {x + 3} \right|\left( {x - 1} \right)} \right) = \left[ \begin{array}{l}f\left[ {\left( {x + 3} \right)\left( {x - 1} \right)} \right]\,\,\,\,\,\,khi\,\,x \ge - 3\\f\left[ { - \left( {x + 3} \right)\left( {x - 1} \right)} \right]\,\,khi\,\,x < - 3\end{array} \right.\) \( = \left[ \begin{array}{l}f\left[ {{x^2} + 2x - 3} \right]\,\,\,\,\,\,khi\,\,x \ge - 3\\f\left[ { - {x^2} - 2x + 3} \right]\,\,khi\,\,x < - 3\end{array} \right.\)
\(\begin{array}{l} \Rightarrow f'\left( x \right) = \left[ \begin{array}{l}\left( {2x + 2} \right)f'\left( {{x^2} + 2x - 3} \right)\,\,\,\,\,\,\,khi\,\,x \ge - 3\,\,\,\,\,\left( 1 \right)\\ - \left( {2x + 2} \right)f'\left( { - {x^2} - 2x + 3} \right)\,\,khi\,\,x < - 3\,\,\,\left( 2 \right)\end{array} \right.\\Cho\,\,f'\left( x \right) = 0:\\\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x = - 1\,\,\left( {tm} \right)\\{x^2} + 2x - 3 = - 3\\{x^2} + 2x - 3 = 0\\{x^2} + 2x - 3 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\x = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\x = - 2\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\x = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\x = - \,3\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\x = - 1 + \sqrt 5 \,\,\left( {tm} \right)\\x = - 1 - \sqrt 5 \,\,\left( {ktm} \right)\end{array} \right.\,\end{array}\)
\(\left( 2 \right) \Leftrightarrow \left[ \begin{array}{l}2x + 2 = 0\\ - {x^2} - 2x + 3 = - 3\\ - {x^2} - 2x + 3 = 0\\ - {x^2} - 2x + 3 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {ktm} \right)\\x = - 1 + \sqrt 7 \,\,\left( {ktm} \right)\\x = - 1 - \sqrt 7 \,\,\left( {tm} \right)\\x = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {ktm} \right)\\x = - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {ktm} \right)\\x = - 1 + \sqrt 3 \,\,\,\left( {ktm} \right)\\x = - 1 - \sqrt 3 \,\,\,\,\left( {ktm} \right)\end{array} \right.\)
Khi đó ta có BBT hàm số \(y = f\left( {\left| {x + 3} \right|\left( {x - 1} \right)} \right)\).
Từ BBT ta thấy phương trình \(f\left( {\left| {x + 3} \right|\left( {x - 1} \right)} \right) = \log m\) có ít nhất 5 nghiệm khi và chỉ khi
\(\left[ \begin{array}{l} - 4 < \log m \le 0 \Rightarrow m = 1\\1 \le \log m < 3 \Leftrightarrow 10 \le m < 1000 \Rightarrow m \in \left\{ {10;11;...;999} \right\}\end{array} \right.\).
Vậy có tất cả 991 giá trị của \(m\) thỏa mãn yêu cầu bài toán.
Chọn B