Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với đáy. Gọi H, I, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC và SD. Khẳng định nào trong các khẳng định sau là sai?A.Ba đường thẳng AK, AH, AI đồng phẳng. B.Bảy điểm A, B, C, D, H, I, K cùng thuộc một mặt cầu. C.BID là góc giữa hai mặt phẳng (SCD) và (SBC). D.Đường thẳng SC vuông góc với mặt phẳng (AKH).
Trong không gian với hệ tọa độ \(Oxyz\) cho điểm \(I\left( 1;-2;\ 3 \right)\) Phương trình mặt cầu tâm I và tiếp xúc với trục Oy là:A.\({{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=9\) B. \({{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=10\) C.\({{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=16\) D. \({{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=8\)
Thể tích V của khối lăng trụ có chiều cao bằng h và diện tích đáy bằng B là:A.\(V=\frac{1}{3}Bh\) B.\(V=Bh\) C. \(V=\frac{1}{6}Bh\) D.\(V=3Bh\)
Biết hàm số \(f\left( x \right)=x\left( 1-x \right){{e}^{-x}}\) có một nguyên hàm là \(F\left( x \right)=\left( a{{x}^{2}}+bx+c \right){{e}^{-x}}\) Tính \(A=2a+b+3c\) A.\(A=3\) B.\(A=8\) C.\(A=9\) D.\(A=6\)
Trong không gian với hệ trục tọa độ \(Oxyz\) cho điểm \(A\left( 2;\ 1;\ 3 \right)\) Mặt phẳng \(\left( P \right)\) đi qua \(A\) và song song với mặt phẳng \(\left( Q \right):\ x+2y+3z+2=0\) A.\(x+2y+3z+5=0\) B. \(x+2y+3z+13=0\) C.\(x+2y+3z-13=0\) D. \(x+2y+3z-9=0\)
Đạo hàm của hàm số \(y={{2}^{3x}}\) là:A.\(y'={{2}^{3x}}\ln 2\) B.\(y'=\frac{1}{\ln 2}\) C. \(y'={{2}^{3x}}.3\ln 2\) D. \(y'=\frac{1}{{{2}^{3x}}.3\ln 2}\)
Tập nghiệm của bất phương trình \({{\log }_{0,3}}x>{{\log }_{0,3}}3\) là:A.\(\left( 1;\ 3 \right)\) B.\(\left( -\infty ;\ 3 \right)\) C.\(\left( 3;+\infty \right)\) D.\(\left( 0;\ 3 \right)\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\left( a;\ b \right)\) Phát biểu nào sau đây là đúng?A.Hàm số \(y=f\left( x \right)\) gọi là đồng biến trên \(\left( a;\ b \right)\) khi và chỉ khi \(f'\left( x \right)\ge 0,\ \forall x\in \left( a;\ b \right)\) B.Hàm số \(y=f\left( x \right)\) gọi là đồng biến trên \(\left( a;\ b \right)\) khi và chỉ khi \(f'\left( x \right)<0,\ \forall x\in \left( a;\ b \right)\) C.Hàm số \(y=f\left( x \right)\) gọi là đồng biến trên \(\left( a;\ b \right)\) khi và chỉ khi \(f'\left( x \right)\le 0,\ \forall x\in \left( a;\ b \right)\) D.Hàm số \(y=f\left( x \right)\) gọi là đồng biến trên \(\left( a;\ b \right)\) khi và chỉ khi \(f'\left( x \right)\ge 0,\ \forall x\in \left( a;\ b \right)\) trong đó \(f'\left( x \right)=0\) tại hữu hạn giá trị\(x\in \left( a;\ b \right)\)
Cho hình chữ nhật ABCD có \(S = 12.\) Tâm \(I\left( {\frac{9}{2};\frac{3}{2}} \right).\,\,M\left( {3;0} \right)\) là trung điểm AD. Tìm tọa độ A, D biết \({y_A} > 0\).A.A(2;1); D(4;-1)B.A(2;1); D(-4;-1)C.A(-2;1); D(4;1)D.A(-2;1); D(-4;-1)
Cho tam giác ABC, \(M\left( {2;1} \right)\) là trung điểm của AC. \(A \in \left( d \right):\,\,2x + 3y - 5 = 0.\,\,H\left( {0; - 3} \right)\) là chân đường cao vẽ từ A. Tìm A, C biết \({x_C} > 0\).A.\(C\left( {6; 1} \right);\,\,A\left( { 2;3} \right)\).B.\(C\left( {6; - 1} \right);\,\,A\left( { 2;-3} \right)\).C.\(C\left( {6; 1} \right);\,\,A\left( { 2;-3} \right)\).D.\(C\left( {6; - 1} \right);\,\,A\left( { - 2;3} \right)\).
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến