Cho hàm số \(y=f(x)\) có đạo hàm tại \({{x}_{0}}=-2\). Kết quả \(\underset{x\to -2}{\mathop{\lim }}\,\frac{2f(x)+xf(-2)}{x+2}\) là A. \(2f'(-2)-f(-2)\). B. \(f(-2)-2f'(-2)\). C. \(f'(-2)\). D. \(2f'(-2)+f(-2)\).
Đáp án đúng: D Giải chi tiết:\(\underset{x\to -2}{\mathop{\lim }}\,\frac{2f(x)+xf(-2)}{x+2}=\underset{x\to -2}{\mathop{\lim }}\,\frac{2\left( f(x)-f\left( -2 \right) \right)+\left( x+2 \right)f(-2)}{x+2}=2\underset{x\to -2}{\mathop{\lim }}\,\frac{f(x)-f\left( -2 \right)}{x+2}+f(-2)=2f'(-2)+f(-2)\) Chọn: D