Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình \(f\left( {x + 2019} \right) = 1\) là: A.\(1\) B.\(2\) C.\(3\) D.\(4\)
Phương pháp giải: Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\). Giải chi tiết: Dựa vào đồ thị hàm số ta thấy: Đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 3 điểm phân biệt nên phương trình \(f\left( {x + 2019} \right) = 1\) có 3 nghiệm phân biệt \(\left[ \begin{array}{l}x + 2019 = a\\x + 2019 = b\\x + 2019 = c\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = a - 2019\\x = b - 2019\\x = c - 2019\end{array} \right.\). Chọn C.