cho hệ phương trình
x-my=2-4m
mx+y=3m+1
1, chứng minh rằng hệ pt luôn có nghiệm với mọi giá trị của m
2,giả sử\(x_0\);\(y_o\)là nghiệm của hệ phương trình
chứng minh rằng \(x^2_0+y^2_0-5\left(x_o+y_0\right)\)luôn bằng một hằng số
a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2e0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm
b) Ta có:
x0 - my0 = 2 - 4m
mx0 + y0 = 3m + 1
Hay là:
x0 - 2 = m (y0 - 4)
y0 - 1 = m (3 - x0)
=> Chia hai vế cho nhau ta được
\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)
=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)
=> -x02 + 5x0 - 6 = y02 - 5y0 + 4
=> x02 + y02 - 5(x0 + y0) = -10
ĐPCM
Lập bảng xét dấu
\(f\left(x\right)=x^2-x+1\)
Giải các hệ phương trình
a) x + 3y + 2z = 8
2x + 2y + z = 6
3x + y + z = 6
b) x - 3y + 2z = -7
-2x + 4y + 3z = 8
3x + y - z = 5
Bài 17 (SBT trang 193)
Cho \(\sin\alpha=\dfrac{8}{17},\sin\beta=\dfrac{15}{17},\) với \(0< \alpha< \dfrac{\pi}{2};0< \beta< \dfrac{\pi}{2}\)
Chứng minh rằng :
\(\alpha+\beta=\dfrac{\pi}{2}\)
câu 5: cho a+b+c=0 và a,b,c khác 0 tính giá trị B= a^2 /(a^2 -b^2 -c^2) +b^2/(b^2 -c^2-a^2) + c^2/(c^2 -b^2 -a^2) cách trình bày nữa ạ
Cho các bất đẳng thức, trong các khẳng định sau, khẳng định nào đúng với mọi giá trị của x?
a) 8x > 4x; b) 4x > 8x;
c) 8x2 > 4x2; d) 8 + x > 4 + x.
gọi x1, x2 là nghiệm của pt \(x^2-x-1=0\)
đặt \(S_n=x^n_1+x^n_2\left(n=1;2;3...\right)\)
a) tính \(S_1,S_2\)
b) c/m rằng : \(S_{n+2}=S_{n+1}+S_n\)
c) tính \(S_6\)
cho a,b,c,là số dương thoả a+b+c=1 chứng minh (1/a+b)+(1/b+c)+(1/c+a)>=9/2
\(f\left(x\right)=x^2+6x+5\)
Cho a, b, c là độ dài ba cạnh của một tam giác.
a) Chứng minh bất đẳng thức (b-c)2 < a2;
b) Từ đó suy ra bất đẳng thức a2 + b2 + c2 < 2(ab + bc +ca).
Chứng minh bất đẳng thức :
x3 + y3 ≥ x2y + xy2, ∀x ≥ 0, ∀y ≥ 0.
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến