Đáp án đúng: A
Giải chi tiết:Ta có
\(\eqalign{ & \overrightarrow {MA} .\overrightarrow {MB} + \overrightarrow {MC} .\overrightarrow {MD} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO} + \overrightarrow {OC} } \right)\left( {\overrightarrow {MO} + \overrightarrow {OD} } \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2M{O^2} + \overrightarrow {OA} .\overrightarrow {OB} + \overrightarrow {OC.} \overrightarrow {OD} + \overrightarrow {MO} \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right). \cr} \)
Có \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 ;\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)
\(\overrightarrow {OA} \bot \overrightarrow {OB} \Rightarrow \overrightarrow {OA} .\overrightarrow {OB} = 0,\overrightarrow {OC} \bot \overrightarrow {OD} \Rightarrow \overrightarrow {OC} .\overrightarrow {OD} = 0\)
Đường tròn nội tiếp hình vuông cạnh a có bán kính \({a \over 2} \Rightarrow MO = {a \over 2} \Rightarrow M{O^2} = {{{a^2}} \over 4}.\)
Vậy \(\overrightarrow {MA} .\overrightarrow {MB} + \overrightarrow {MC} .\overrightarrow {MD} = 2.{{{a^2}} \over 4} = {{{a^2}} \over 2}\)
Chọn A.