Cho phương trình \(x^2+\left(m-1\right)x-m^2-2=0\) (1) với m là tham số thực.

a) Chứng minh: phương trình (1) luôn có 2 nghiệm trái dấu \(x_1,x_2\) với mọi giá trị của m

b) Tìm m để biểu thức \(T=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất

Các câu hỏi liên quan