Cho x,y≥0 thảo mãn x+y=1. Tìm GTNN, GTLN của A=x2+y2
Lời giải:
Tìm giá trị nhỏ nhất
Ta thấy: \(x^2+y^2-2xy=(x-y)^2\geq 0\)
\(\Rightarrow x^2+y^2\geq 2xy\)
\(\Rightarrow 2(x^2+y^2)\geq (x+y)^2\)
\(\Leftrightarrow 2A\geq 1\Rightarrow A\geq \frac{1}{2}\)
Vậy \(A_{\min}=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Tìm GTLN:
Thay $y=1-x$ ta có: \(A=x^2+(1-x)^2=1+2x^2-2x\)
\(=1+2x(x-1)\)
Vì $y\geq 0$ nên \(x=1-y\leq 1\)
Vậy \(0\leq x\leq 1\Rightarrow x(x-1)\leq 0\)
\(\Rightarrow A=1+2x(x-1)\leq 1+2.0=1\)
Vậy \(A_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
giải hpt
\(\left\{{}\begin{matrix}x\left(x+1\right)+y\left(y+1\right)=8\\x+y+xy=5\end{matrix}\right.\)
xin giải dùm hệ phương trình này
xy=320
(x-16)(y+10)=320
Bài 1: Tìm các số nguyên x,y thỏa mãn pt: (2x+1)y=x+1
Giải giúp mình hệ phương trình này với: 2a-b=8, b=52,63%(a+b)tìm a, b
Cho PT: x2-4mx+3m2-3=0 (x là ẩn, m là tham số)
a) Giải PT với m=1?
b) Tìm m để PT có 2 nghiệm x1; x2 thỏa mãn:\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|\) đạt GTLN?
Cho hệ phương trình: \(\left\{{}\begin{matrix}\left(a+1\right)x+y=4\\ax+y=2a\end{matrix}\right.\)( a là tham số)
1. Giải hệ khi a=1 ( ko cần làm đâu nhé)
2. Chứng minh rằng với mọi giá trị của a, hệ luôn có nghiệm duy nhất ( x; y) sao cho x+y \(\geq \) 2
Giải hệ PT: \(\left\{{}\begin{matrix}2x^2y-xy^2=1\\8x^3-y^3=7\end{matrix}\right.\)
giải phương trình
( 2x2 -x -1) - 3 = 4x2 - 2x + 2
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
bài1: Cho hệ phương trình :\(\left\{{}\begin{matrix}2mx+3y=5\\\left(m+1\right)x+y=2\end{matrix}\right.\) tìm m để hpt có nghiệm duy nhất thỏa mãn x<0, y là số nguyên
Bài 2: tìm tất cả các số nguyên x, y thỏa mãn : \(^{x^2+2y^2-2xy-4y+3=0}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến