Cho \({z_1};\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\), biết \({z_1} - {z_2}\) có phần ảo là số thực âm. Tìm phần ảo của số phức \({\rm{w}} = 2z_1^2 - z_2^2\). A.\(3.\) B.\( - 12.\) C.\( - 3.\) D.\(12.\)
Phương pháp giải: - Tìm nghiệm của phương trình đã cho. - Sử dụng dữ kiện để tìm \({z_1};\,\,{z_2}\) rồi tính số phức w. Giải chi tiết:Ta có \({z^2} - 2z + 5 = 0 \Leftrightarrow \left[ \begin{array}{l}z = 1 + 2i\\z = 1 - 2i\end{array} \right.\) Mà \({z_1} - {z_2}\) có phần ảo là số thực âm nên \(\left\{ \begin{array}{l}{z_1} = 1 - 2i\\{z_2} = 1 + 2i\end{array} \right..\) \( \Rightarrow {\rm{w}} = 2z_1^2 - z_2^2 = - 3 - 12i\). Vậy phần ảo của số phức w là \( - 12.\) Chọn B.