Trong không gian Oxyz, cho bốn điểm \(A\left( {0;1; - 1} \right),\) \(B\left( {1;1;2} \right),\) \(C\left( {1; - 1;0} \right)\) và \(D\left( {0;0;1} \right)\). Mặt phẳng \(\left( \alpha  \right)\) song song với mặt phẳng \(\left( {BCD} \right)\) và chia khối tứ diện ABCD thành hai khối đa diện sao cho tỉ số thể tích của khối đa diện có chứa điểm A và khối tứ diện ABCD bằng \(\dfrac{1}{{27}}\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\).
A.\( - y + z - 4 = 0\)
B.\(y - z - 1 = 0\)
C.\(y + z - 4 = 0\)
D.\(3x - 3z - 4 = 0\)

Các câu hỏi liên quan