chứng minh định lý 3 bài cấp số cộng ( đại số 11 nâng cao , chương 3 )
Giả sử (un) là một cấp số cộng. Với mỗi số nguyên dương n, gọi Sn là tổng n số hạng đầu tiên của nó (Sn=u1+u2+...+un). Khi đó ta có: Sn=\(\frac{\left(u_1+u_n\right)n}{2}\)
Nghe lời như vầy có phải dễ thương hơn không :3
Gọi công sai của cấp số cộng đó là d và số đầu tiên là u1 thì ta có:
\(\left\{\begin{matrix}u_2=u_1+d\\u_3=u_1+2d\\...\\u_n=u_1+\left(n-1\right)d\end{matrix}\right.\)
Ta có: \(S_n=u_1+u_2+u_3...+u_n\)
\(=u_1+u_1+d+u_1+2d+...+u_1+\left(n-1\right)d\)
\(=n.u_1+d\left(1+2+...+\left(n-1\right)\right)\)
\(=n.u_1+\frac{\left(n-1\right).n.d}{2}\)
\(=\frac{n}{2}\left(2u_1+\left(n-1\right)d\right)\)
\(=\frac{n\left(u_1+u_n\right)}{2}\)
\(\left\{\begin{matrix}S=U_1+U_2+U_3+...+U_{\left(n-2\right)}+U_{\left(n-1\right)}+U_n\left(a\right)\\S=U_{\left(n\right)}+U_{\left(n-1\right)}+U_{\left(n-2\right)}+...+U_3+U_3+U_1\left(b\right)\end{matrix}\right.\)(1)
Lấy (a) công (b) theo thứ tự ta có
\(S+S=\left(U_1+U_n\right)+\left(U_2+U_{\left(n-1\right)}\right)+...+\left(U_{\left(n-1\right)}+U_2\right)+\left(U_n+U_1\right)\)(2)
Do cấp công là cấp số biến đổi đều do vậy tất cả các số hạng (...) của (2) đều bằng nhau nghĩa là:
\(\left(U_1+U_n\right)=\left(U_2+U_{\left(n-1\right)}\right)=\left(U_{\left(n-1\right)}+U_2\right)=\left(U_n+U_1\right)\)
Số các cặp (-) đúng bằng số số hạng của dẫy =n
Vậy ta có: (2) \(\Leftrightarrow2S=\left(U_1+U_n\right)n=\left(U_2+U_{n-1}\right)n=...\Rightarrow S=\frac{\left(U_1+U_n\right)n}{2}\Rightarrow dpcm\)
p/s: cái này mình nội suy từ kiến thức lớp 6.
Tam giác ABC có \(\cot A,\cot B,\cot C\) theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng ?
Cho tam giác ABC thỏa mãn điều kiện \(\tan A.\tan B=6\) và \(\tan A.\tan C=3\). Hãy chứng tỏ \(\tan A,\tan B,\tan C\) theo thứ tự lập thành cấp số cộng ?
Cho tam giác ABC có \(\cot\frac{A}{2},\cot\frac{B}{2},\cot\frac{C}{2}\) theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng 3 cạnh a, b, c đó cũng lập thành cấp số cộng ?
Cho tam giác ABC, có 3 cạnh a, b, c, theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng : \(\cot\frac{A}{2}.\cot\frac{C}{2}=3\)
Chứng minh rằng, nếu \(\log_xa;\log_yb;\log_zc\) tạo thành một cấp số cộng (theo thứ tự đó) thì :
\(\log_by=\frac{2\log_ax\log_cz}{\log_ax+\log_cz}\) (\(0 < x, y, z, a, b, c\)\(e1\))
Cho một cấp số cộng \(u_1,u_2,u_3,u_4\).Chứng minh rằng nếu \(\left|u_1u_4-u_2u_3\right|\le6\) thì biểu thức \(A=\sqrt{\left(x-u_1\right)\left(x-u_2\right)\left(x-u_3\right)\left(x-u_4\right)+9}\) có nghĩa với mọi x ?
Với giá trị nào của a, ta có thể tìm được các giá trị của x để các số : \(5^{x+1}+5^{1-x}.\frac{a}{2},25^x+25^{-x}\), lập thành một cấp số cộng ?
Tính tổng : \(S=\left(2+\frac{1}{2}\right)^2+\left(4+\frac{1}{4}\right)^2+...+\left(2^n+\frac{1}{2^n}\right)^2\)
Xen vào giữa 2 số 4 và 40 bốn số để được một cấp số cộng. Tìm 4 số đó ?
Tìm m để phương trình \(x^4-\left(3m+5\right)x^2+\left(m+1\right)^2=0\) có 4 nghiệm lập thành một cấp số cộng ?
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến