a) Ta có: 102 đồng dư với 1 (mod 99)
=> (102)1005 đồng dư với 11005 (mod 99)
=> 102010 - 1 đồng dư với 1 - 1 (mod 99)
=> 102010 - 1 đồng dư với 0 (mod 99)
=> 102010 - 1 \(⋮\) 99
b) Ta có: 33 đồng dư với 1 (mod 13)
=> (33)643 đồng dư với 1643 (mod 13)
=> 31929 đồng dư với 1 (mod 13)
=> 31930 đồng dư với 3 (mod 13)
Lại có: 24 đồng dư với 3 (mod 13)
=> (24)3 đồng dư với 33 (mod 13)
mà 33 đồng dư với 1 (mod 13)
=> 212 đồng dư với 1 (mod 13)
=> (212)160 đồng dư với 1160 (mod 13)
=> 21920 đồng dư với 1 (mod 13)
=> 21930 đồng dư với 210 (mod 13)
mà 210 đồng dư với 10 (mod 13)
=> 21930 đồng dư với 10 (mod 13)
Như vậy: 31930 + 21930 đồng dư với 3 + 10 (mod 13)
=> 31930 + 21930 đồng dư với 13 đồng dư với 0 (mod 13)
=> 31930 + 21930 \(⋮\) 13
c) Ta có: 210 + 1 = 1025 = 25.41
=> (210 + 1)2010 = (25.41)2010 = 252010.412010 \(⋮\) 252010