Chứng minh rằng nếu a, b, c là độ dài ba cạnh của 1 tam giác thì :

\(a^2+b^2+c^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\ge4\sqrt{3}S\)

trong đó S là diện tích của tam giác.

Cho S = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với p là nửa chu vi (Công thức Hê rông)

Các câu hỏi liên quan