Cho a,b,c>0 và a+b+c=2
CMR: \(\sqrt{a^2+\dfrac{1}{a^2}}\)+\(\sqrt{b^2+\dfrac{1}{b^2}}\)+\(\sqrt{c^2+\dfrac{1}{c^2}}\) \(\le\)\(\sqrt{\dfrac{97}{4}}\)
\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\Leftrightarrow\sqrt{\dfrac{97}{4}}P=\sqrt{4+\dfrac{81}{4}}\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\ge\left(2a+\dfrac{9}{2a}\right)+\left(2b+\dfrac{9}{2b}\right)+\left(2c+\dfrac{9}{2c}\right)\)
\(=2\left(a+b+c\right)+\dfrac{9}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\ge4+\dfrac{9}{2}.\dfrac{9}{a+b+c}=4+\dfrac{81}{4}=\dfrac{97}{4}\)
\(\Rightarrow P\ge\sqrt{\dfrac{97}{4}}\)
PS: Lần sau chép đề cẩn thận nhé bạn.
Phát biểu nào là sai ?
A. Nếu \(\overrightarrow{AB}\) = \(\overrightarrow{AC}\) thì \(\left|\overrightarrow{AB}\right|\) = \(\left|\overrightarrow{AC}\right|\)
B. \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\) thì A,B,C,D thẳng hàng
C. Nếu 3. \(\overrightarrow{AB}\) + 7 . \(\overrightarrow{AC}\) = \(\overrightarrow{0}\) thì A,B,C thẳng hàng
D. \(\overrightarrow{AB}\) - \(\overrightarrow{CD}\) = \(\overrightarrow{DC}\) - \(\overrightarrow{BA}\)
bài 1: cho △ABC có phương trình 3 cạnh AB: 2x-3y-1=0 ; BC: x+3y+7=0 ; CA= 5x-2y+1=0. Viết phương trình đường cao AH
bài2: tìm điểm M trên đường thẳng d :x-y+2=0 cách đều 2 điểm E (0;4) và F(4;-9)
Cho a,b,c thực thõa mãn a2+2b2+5c2=22.Tìm GTLN của biểu thức A=ab+ac+bc
\(x^4-4x^3-2x^2+12x+5=0\)
Cho A (2;3) , B (0;2) . Điểm M trên trục hoành sao cho A,M,B thẳng hàng là :
A (-4;0)
B.(4:0)
C.(5;0)
D.(-3;0)
Giúp mình với nhé !!!
Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko
Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)
=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Áp dụng BĐT Cauchy ta có
\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)
\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)
Có một cuộc thi chạy, Thầy Thuậnđang chạy trên đường thẳng d có pt tham số là x=1-t, y=-2+t
Cô Lý đến cổ vũ cho thầy thuận đứng ở vị trí L(1;-4).
Hỏi thầy Thuận chạy đến vị trí nào để ngắm Cô Lý rõ nhất
bạn nào tl giúp mình vs, khó quá
Giải hệ PT: \(\left\{{}\begin{matrix}xy+45y=4x^2\\y^2+95y+6=7x^2+5x\end{matrix}\right.\)
Chứng minh với x,y là 2 số không âm tùy ý, ta luôn có: \(3x^3+17y^3\ge18xy^2\)
Xài bđt Cauchy nha.
Tìm gtln của (x + z)(y + t) biết x2 + y2 + 2z2 + 2t2 = 1
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến