CMR, nếu x≥ y≥0 thì x/1+x ≥ y/1+y
Lời giải:
Sử dụng phép biến đổi tương đương. Với \(x,y\geq 0\):
\(\frac{x}{x+1}\geq \frac{y}{y+1}\)
\(\Leftrightarrow x(y+1)\geq y(x+1)\)
\(\Leftrightarrow x\geq y\)
Điều này luôn đúng theo điều kiện đề bài.
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y\)
Chứng minh :sin4x - cos44x = 1 - \(\dfrac{ }{ }\)sin2x
1^2-2^2+3^2-4^2+...+99^2-100^2
Cho a,b,c dương. CMR
\(\dfrac{a^6}{b^3}+\dfrac{b^6}{c^3}+\dfrac{c^6}{a^3}\ge\dfrac{a^4}{c}+\dfrac{b^4}{a}+\dfrac{c^4}{b}\)
gpt a/ \(\left(5x+1\right)\sqrt{2x+1}-\left(7x+3\right)\sqrt{x}=1\)
b/ \(2\sqrt{1-x}-\sqrt{1+x}+3\sqrt{1-x^2}=3-x\)
Cho tam giác ABCD cân tại A, biết góc \(\)B=\(30^0\) .Góc giữa hai vec tơ \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\) bằng:
A \(90^0\)
B.\(120^0\)
C.\(150^o\)
D.\(180^o\)
Cho a,b,c là độ dài 3 cạnh tam giác. Tìm GTNN của
P=\(\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)
Cho a,b,c dương.CMR
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
CMR \(P=\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\ge\dfrac{3\sqrt{13}}{2}\)
Cho a,b,c dương thỏa mãn a+b+c=3
Tìm GTNN của P=\(\sqrt{\dfrac{a+b}{2ab}}+\sqrt{\dfrac{b+c}{2bc}}+\sqrt{\dfrac{c+a}{2ca}}\)
Cho a,b,c dương thỏa mãn abc=1
Tìm GTNN của P=\(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến