Đáp án:
32
Giải thích các bước giải:
Có 6 cách chọn một người tuỳ ý ngồi vào chỗ thứ nhất. Tiếp đến, có 3 cách chọn một người khác phái ngồi vào chỗ thứ 2. Lại có 2 cách chọn một người khác phái ngồi vào chỗ thứ 3, có 2 cách chọn vào chỗ thứ 4, có 1 cách chọn vào chỗ thứ 5, có 1 cách chọn vào chỗ thứ 6.
Vậy có : 6.3.2.2.1.1=72 cách
Cho cặp nam nữ C, D ngồi vào chỗ thứ nhất và chỗ thứ hai, có 2 cách. Tiếp đến, chỗ thứ ba có 2 cách chọn, chỗ thứ tư có 2 cách chọn, chỗ thứ năm có 1 cách chọn, chỗ thứ sáu có 1 cách chọn.
Bây giờ, cho cặp nam nữ C, D ngồi vào chỗ thứ hai và chỗ thứ ba. Khi đó, chỗ thứ nhất có 2 cách chọn, chỗ thứ tư có 2 cách chọn, chỗ thứ năm có 1 cách chọn, chỗ thứ sáu có 1 cách chọn.
Tương tự khi cặp nam nữ C, D ngồi vào chỗ thứ ba và thứ tư, thứ tư và thứ năm, thứ năm và thứ sáu.
Vậy có: 5.2.2.2.1.1 = 40 cách.
Số cách chọn để cặp nam nữ đó không ngồi kề nhau: 72-40=32 cách