Đáp án đúng: A $\displaystyle \sqrt{{{n}^{2}}-n+1}-n\sim \sqrt{{{n}^{2}}}-n=0\xrightarrow[{}]{}$ nhân lượng liên hợp: $\displaystyle \lim \left( \sqrt{{{n}^{2}}-n+1}-n \right)=\lim \frac{-n+1}{\sqrt{{{n}^{2}}-n+1}+n}=\lim \frac{-1+\frac{1}{n}}{\sqrt{1-\frac{1}{n}+\frac{1}{{{n}^{2}}}}+1}=-\frac{1}{2}\xrightarrow[{}]{}$ Chọn A. Giải nhanh: $\displaystyle \sqrt{{{n}^{2}}-n+1}-n=\frac{-n+1}{\sqrt{{{n}^{2}}-n+1}+n}\sim \frac{-n}{\sqrt{{{n}^{2}}}+n}=-\frac{1}{2}.$