Giải thích các bước giải:
a, (x² + 1)(x - 1) = 0
<=> x - 1 = 0 (vì x² + 1 > 0)
<=> x = 1
b, x³ + 1 = x(x + 1)
<=> (x + 1)(x² - x + 1) - x(x + 1) = 0
<=> (x + 1)(x² - x + 1 - x) = 0
<=> (x + 1)(x² - 2x + 1) = 0
<=> (x + 1)(x - 1)² = 0
<=> x + 1 = 0 hoặc (x - 1)² = 0
<=> x = - 1 hoặc x = 1
c, 7 - (2x + 4) = - (x + 4)
<=> 7 - 2x - 4 = - x - 4
<=> - 2x + 3 = - x - 4
<=> - 2x + x = - 4 - 3
<=> - x = - 7
<=> x = 7
d, (x - 1) - (2x - 1) = 9 - x
<=> x - 1 - 2x + 1 = 9 - x
<=> - x = 9 - x
<=> - x + x = 9
<=> 0x = 9 (vô nghiệm)
e, x(x + 3)² - 3x = (x + 2)³ + 1
<=> x(x² + 6x + 9) - 3x = x³ + 6x² + 12x + 8 + 1
<=> x³ + 6x² + 9x - 3x = x³ + 6x² + 12x + 9
<=> x³ +6x² +6x = x³ +6x² +12x + 9
<=> x³ + 6x² + 6x - x³ - 6x² - 12x = 9
<=> - 6x = 9 <=> x = - 3/2
f, (x - 3)(x + 4) - 2(4x - 2) = (x - 4)²
<=> x² +x - 12 - 8x + 4 = x² - 8x +16
<=> x² - 7x - 8 = x² - 8x + 16
<=> x² - 7x - x² + 8x = 16 + 8
<=> x = 24