`b) (x- 1/2) : 1 2/5 = 1 2/5 : (x- 1/2)`
`⇔ (x- 1/2) : 7/5 = 7/5 : (x- 1/2)`
`⇔ (x- 1/2). (x- 1/2) = 7/5. 7/5`
`⇔ (x- 1/2). (x- 1/2) = 7/5. 7/5`
`⇔ x^2 - 1/2x - 1/2x + 1/4 = 49/25`
`⇔x^2-x= 171/100`
`⇔x^2-x- 171/100`
`⇔x^2+9/10x- 19/10x - 171/100=0`
`⇔x(x+ 9/10)-19/10(x+9/10)=0`
`⇔(x+ 9/10)(x- 19/10)=0`
`⇔x+ 9/10=0; x- 19/10=0`
`⇔x=-9/10; x= 19/10`
Vậy `S={ -9/10; 19/10}`