Đáp án:
`d)x^2-sqrt3=sqrt2`
`<=>x^2=sqrt2+sqrt3`
`<=>` \(\left[ \begin{array}{l}x=\sqrt{\sqrt2+\sqrt3}\\x=-\sqrt{\sqrt2+\sqrt3}\end{array} \right.\)
`e)x^2-5=0`
`<=>x^2=5`
`<=>` \(\left[ \begin{array}{l}x=\sqrt5\\x=-\sqrt5\end{array} \right.\)
`f)x^2+sqrt5=2`
`<=>x^2=2-sqrt5`
Vì `2=sqrt4<sqrt5`
`=>2-sqrt5<0`
Mà `x^2>=0`
Vậy pt vô nghiệm
`g)x^2=sqrt3`
`<=>` \(\left[ \begin{array}{l}x=\sqrt[4]{3}\\x=-\sqrt[4]{3}\end{array} \right.\)
`h)2x^2+3sqrt2=2sqrt3`
`<=>2x^2=2sqrt3-3sqrt2`
Vì `2sqrt3=sqrt{12}<sqrt{18}=3sqrt2`
`=>2sqrt3-3sqrt2<0`
Mà `x^2>=0`
Vậy pt vô nghiệm
`i)(x-1)^2=1 9/16`
`<=>(x-1)^2=25/16`
`<=>` \(\left[ \begin{array}{l}x-1=\dfrac54\\x-1=-\dfrac54\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac94\\x=-\dfrac14\end{array} \right.\)