điều kiện |x| \(\le\sqrt{26}\). đặt y=\(\sqrt{26-x^2\ge0,}\) ta có hệ
\(\begin{cases}x^2+y^2=26\\x+y+xy=11\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}\left(x+y^2\right)-2xy=26\\x+y+xy=11\end{cases}\)
Đặt S=x+y và P=xy, điều kiện \(S^2\ge4P\). khi đó
\(\begin{cases}S^2-2P=26\\S+P=11\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}S^2-2\left(11-S\right)=26\\P=11-S\end{cases}\)
\(\Leftrightarrow\)\(\begin{cases}S^2+2S-48=0\\P=11-S\end{cases}\)\(\Leftrightarrow\)P=11-S và \(\left[\begin{array}{nghiempt}S=6\\S=-8\end{array}\right.\)
\(\begin{cases}S=6\\P=5\end{cases}\) hoặc \(\begin{cases}S=-8\\P=19\end{cases}\) (loại)
vậy \(\begin{cases}x+y=6\\xy=5,\end{cases}\) hay x và y là nghiệm của phương trình
\(t^2-6t+5=0\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}t=1\\t=5\end{array}\right.\)
do đó \(\begin{cases}x=1\\y=5\end{cases}\) hoặc \(\begin{cases}x=5\\y=1\end{cases}\)
* Khi \(\begin{cases}x=1\\y=5\end{cases}\) ta có \(\begin{cases}x=1\\\sqrt{26-x^2=5}\end{cases}\)\(\Leftrightarrow\)\(x=1\)
* Khi \(\begin{cases}x=5\\y=1\end{cases}\) ,ta có \(\begin{cases}x=5\\\sqrt{26-x^2=1}\end{cases}\)\(\Leftrightarrow\)\(x=5\)
phương trình có hai nghiệm x=1 và x=5