Giải thích các bước giải:
$\lim \dfrac{(3n+1)^2(5n+2)^6}{(n+1)^3n^2(2n^3+2n+1)}$
$=\lim \dfrac{(3n+1)^2(5n+2)^6: n^8}{(n+1)^3n^2(2n^3+2n+1):n^8}$
$=\lim \dfrac{((3n+1):n)^2((5n+2):n)^6}{((n+1):n)^3((2n^3+2n+1):n^3)}$
$=\lim \dfrac{(3+\dfrac{1}{n})^2(5+\dfrac{2}{n})^6}{(1+\dfrac{1}{n})^3(2+\dfrac{2}{n^2}+\dfrac{1}{n^3})}$
$=\dfrac{(3+0)^2(5+0)^6}{(1+0)^3(2+0+0)}$
$=\dfrac{3^2.5^6}{2}$