Đáp án:
$\begin{array}{l}
q)\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right):\left( {\dfrac{{\sqrt 3 }}{{\sqrt 3 + \sqrt 2 }} + \dfrac{{\sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)\\
= \left( {3 - 2} \right):\left( {\dfrac{{\sqrt 3 \left( {\sqrt 3 - \sqrt 2 } \right) + \sqrt 2 \left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)}}} \right)\\
= 1:\dfrac{{3 - \sqrt 6 + \sqrt 6 + 2}}{{3 - 2}}\\
= \dfrac{1}{5}\\
r)\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} + \dfrac{{2 + \sqrt 2 }}{{\sqrt 2 + 1}} - \left( {\sqrt 3 + 2} \right)\\
= \dfrac{{\sqrt 3 \left( {\sqrt 3 + 2} \right)}}{{\sqrt 3 }} + \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{\sqrt 2 + 1}} - \sqrt 3 - 2\\
= \sqrt 3 + 2 + \sqrt 2 - \sqrt 3 - 2\\
= \sqrt 2
\end{array}$