Bài `1`:
`a) (5 - x)(5 + x) - (2x - 1)^2`
`= 5^2 - x^2 - [(2x)^2 - 2. 2x + 1^2]`
`= 25 - x^2 - (4x^2 - 4x + 1)`
`= 25 - x^2 - 4x^2 + 4x - 1`
`= -5x^2 + 4x + 24`
`b) (x^4 + 2x^3 + 10x - 25) : (x^2 + 5)`
`= [(x^4 - 25) + (2x^3 + 10x)] : (x^2 + 5)`
`= {[(x^2)^2 - 5^2] + 2x(x^2 + 5)} : (x^2 + 5)`
`= [(x^2 + 5)(x^2 - 5) + 2x(x^2 + 5)] : (x^2 + 5)`
`= (x^2 + 5)(x^2 - 5 + 2x) : (x^2 + 5)`
`= x^2 - 5 + 2x`
Bài `2`:
`a) x^4 - 8x^2 - 9 = 0`
`=> (x^2)^2 - 2x^2. 4 + 16 - 25 = 0`
`=> (x^2)^2 - 2x^2. 4 + 4^2 = 25`
`=> (x^2 - 4)^2 = (+-5)^2`
`=>` \(\left\{\begin{matrix}x^2 - 4=5\\x^2 - 4 = -5\end{matrix}\right.\)
`=>` \(\left\{\begin{matrix}x^2 =9\\x^2 =-1\end{matrix}\right.\)
`=>` \(\left\{\begin{matrix}x=\pm3\\x \in\emptyset \end{matrix}\right.\)
Vậy `x = +-3`
`b) 6x^2 - (2x + 5)(3x - 2) = -12`
`=> 6x^2 - (2x. 3x - 2x. 2 + 5. 3x - 5. 2) = -12`
`=> 6x^2 - (6x^2 - 4x + 15x - 10) = -12`
`=> 6x^2 - 6x^2 + 4x - 15x + 10 = -12`
`=> -11x + 10 = -12`
`=> -11x = -22`
`=> x = 2`
Vậy `x = 2`