Đáp án:
f. \(TXD:D = \left[ {\dfrac{3}{2};5} \right]\backslash \left\{ 3 \right\}\)
Giải thích các bước giải:
\(\begin{array}{l}
f.DK:\left\{ \begin{array}{l}
2x - 3 \ge 0\\
x \ne 3\\
5 - x \ge 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
5 \ge x \ge \dfrac{3}{2}\\
x \ne 3
\end{array} \right.\\
\to TXD:D = \left[ {\dfrac{3}{2};5} \right]\backslash \left\{ 3 \right\}\\
i.DK:\left\{ \begin{array}{l}
9 - 2x \ge 0\\
x - 2 \ge 0\\
2 \ne \sqrt {x - 2}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{9}{2} \ge x \ge 2\\
x - 2 \ne 4
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{9}{2} \ge x \ge 2\\
x \ne 6
\end{array} \right.\\
\to TXD:D = \left[ {2;\dfrac{9}{2}} \right]\\
1)DK:\left\{ \begin{array}{l}
2x + 11 \ge 0\\
\left| {3x - 2} \right| \ne 4
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \ge - \dfrac{{11}}{2}\\
3x - 2 \ne 4\\
3x - 2 \ne - 4
\end{array} \right. \to \left\{ \begin{array}{l}
x \ge - \dfrac{{11}}{2}\\
x \ne 2\\
x \ne - \dfrac{2}{3}
\end{array} \right.\\
\to TXD:D = \left[ { - \dfrac{{11}}{2}; + \infty } \right)\backslash \left\{ { - \dfrac{2}{3};2} \right\}
\end{array}\)