Đáp án:
a, $\sqrt[2]{4x²}$ = 8
⇒ $\sqrt[2]{(2²)(±x)²}$ = 8
⇒ 2. ±x = 8
⇒ \(\left[ \begin{array}{l}2x=8\\-2x=8\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\)
Vậy x = 4 hoặc x = -4
b, $\sqrt[2]{16x²}$ = | -20 |
⇒ $\sqrt[2]{4².x²}$ = 20 ( do biểu thức nằm trong dấu g/trị tuyệt đối luôn ≥ 0 )
⇒ ±x . 4 = 20
⇒ \(\left[ \begin{array}{l}x=5\\x=-5\end{array} \right.\)
Vậy x = 5 hoặc x = -5
c, $\sqrt[2]{x² + 4x + 2}$ = 2
⇒ $\sqrt[2]{(x + 2 )²}$ = 2
⇒ | x + 2 | = 2
⇒ \(\left[ \begin{array}{l}x + 2=2\\x + 2=-2\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x=0\\x=-4\end{array} \right.\)
Vậy x = 0 hoặc x = -4
d, $\sqrt[2]{25x² - 10x + 1}$ = 4x - 9
⇒ $\sqrt[2]{( 5x - 1 )²}$ = 4x - 9
⇒ | 5x - 1 | = 4x - 9
⇒ \(\left[ \begin{array}{l}5x - 1 = 4x - 9\\5x - 1 =-4x + 9\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x=-8\\x=-$\frac{8}{9}$ \end{array} \right.\)
e, $\sqrt[2]{x² - 6x + 9}$ = 4 - x
⇒ $\sqrt[2]{( x - 3 )²}$ = 4 - x
⇒ | x - 3 | = 4 - x
⇒ \(\left[ \begin{array}{l}x - 3=4 - x\\x - 3=-4 + x\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x=$\frac{7}{2}$ \\0 = -1\end{array} \right.\) ( loại )
Vậy x = $\frac{7}{2}$
f, $\sqrt[2]{x + 2$\sqrt[2]{x - 1}$ }$ = 4
⇒ x + 2$\sqrt[2]{x - 1}$ = 4
⇒ 2$\sqrt[2]{x - 1} = 4 - x
⇒ 4 . ( x - 1 ) = ( 4 - x )²
⇒ 4x - 4 = 16 - 8x + x²
⇒ x² - 12x + 20 = 0
⇒ ( x - 10 ) ( x - 2 ) = 0
⇒ \(\left[ \begin{array}{l}x=10\\x=2\end{array} \right.\)
Vậy x = 10 hoặc x = -2
g , $\sqrt[2]{x + 4$\sqrt[2]{x - 4}$ }$ = 2
⇒ $\sqrt[2]{x - 4 + 2.2$\sqrt[2]{x - 4}$ + 2²}$ = 2
⇒ $\sqrt[2]{( $\sqrt[2]{x - 4}$ + 2)²}$ = 2
⇒ | $\sqrt[2]{x - 4}$ + 2 | = 2
⇒ \(\left[ \begin{array}{l}$\sqrt[2]{x - 4}$ + 2=2\\$\sqrt[2]{x - 4}$ + 2= -2\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}$\sqrt[2]{x - 4}$ = 0\\$\sqrt[2]{x - 4}$ = -4\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x - 4=0\\x - 4=-2\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x=4\\x=-2\end{array} \right.\)