Giải thích các bước giải:
a) ĐKXĐ: $a\ge 0; a\ne 4$
Ta có:
$\begin{array}{l}
A = \dfrac{{\sqrt a + 2}}{{\sqrt a + 3}} - \dfrac{5}{{a + \sqrt a - 6}} + \dfrac{1}{{2 - \sqrt a }}\\
= \dfrac{{\sqrt a + 2}}{{\sqrt a + 3}} - \dfrac{5}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \dfrac{1}{{\sqrt a - 2}}\\
= \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right) - 5 - \left( {\sqrt a + 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{a - 4 - 5 - \sqrt a - 3}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{a - \sqrt a - 12}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 4} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}}
\end{array}$
Vậy $A = \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}}$ khi $a\ge 0; a\ne 4$
b) Ta có:
$a = 7 - 4\sqrt 3 $ thỏa mãn ĐKXĐ.
Mà $a = 7 - 4\sqrt 3 = {\left( {\sqrt 3 - 2} \right)^2} \Rightarrow \sqrt a = 2 - \sqrt 3 $
Như vậy khi $a = 7 - 4\sqrt 3 $ thì:
$A = \dfrac{{2 - \sqrt 3 - 4}}{{2 - \sqrt 3 - 2}} = \dfrac{{ - 2 - \sqrt 3 }}{{ - \sqrt 3 }} = \dfrac{{2 + \sqrt 3 }}{{\sqrt 3 }} = \dfrac{{3 + 2\sqrt 3 }}{3}$
Vậy $A = \dfrac{{3 + 2\sqrt 3 }}{3}$ khi $a = 7 - 4\sqrt 3 $
c) Để $A<1$
$\begin{array}{l}
\Leftrightarrow \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}} < 1\\
\Leftrightarrow \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}} - 1 < 0\\
\Leftrightarrow \dfrac{{\sqrt a - 4 - \sqrt a + 2}}{{\sqrt a - 2}} < 0\\
\Leftrightarrow \dfrac{{ - 2}}{{\sqrt a - 2}} < 0\\
\Leftrightarrow \sqrt a - 2 > 0\\
\Leftrightarrow \sqrt a > 2\\
\Leftrightarrow a > 4
\end{array}$
Vậy $A < 1 \Leftrightarrow a > 4$