Giải thích các bước giải:
ĐKXĐ: \(\left\{ \begin{array}{l}
x \ge 0\\
x \ne 1
\end{array} \right.\)
Ta có:
\(\begin{array}{l}
P = \left( {\dfrac{{2\sqrt x + 2}}{{x\sqrt x + x - \sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}}} \right):\left( {1 - \dfrac{{\sqrt x }}{{\sqrt x + 1}}} \right)\\
= \left( {\dfrac{{2\left( {\sqrt x + 1} \right)}}{{x.\left( {\sqrt x + 1} \right) - \left( {\sqrt x + 1} \right)}} + \dfrac{1}{{\sqrt x + 1}}} \right):\left( {1 - \dfrac{{\sqrt x }}{{\sqrt x + 1}}} \right)\\
= \left( {\dfrac{{2\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {x - 1} \right)}} + \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\left( {\sqrt x + 1} \right) - \sqrt x }}{{\sqrt x + 1}}\\
= \left( {\dfrac{2}{{x - 1}} + \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{1}{{\sqrt x + 1}}\\
= \left( {\dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{1}{{\sqrt x + 1}}\\
= \dfrac{{2 + \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}.\left( {\sqrt x + 1} \right)\\
= \dfrac{{\sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}.\left( {\sqrt x + 1} \right)\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}}\\
b,\\
P > 1\\
\Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}} - 1 > 0\\
\Leftrightarrow \dfrac{{\left( {\sqrt x + 1} \right) - \left( {\sqrt x - 1} \right)}}{{\sqrt x - 1}} > 0\\
\Leftrightarrow \dfrac{2}{{\sqrt x - 1}} > 0\\
\Leftrightarrow \sqrt x - 1 > 0\\
\Leftrightarrow x > 1\\
c,\\
P = \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}} = \dfrac{{\left( {\sqrt x - 1} \right) + 2}}{{\sqrt x - 1}} = 1 + \dfrac{2}{{\sqrt x - 1}}\\
P \in Z \Leftrightarrow \dfrac{2}{{\sqrt x - 1}} \in Z \Leftrightarrow \sqrt x - 1 \in \left\{ { \pm 1; \pm 2} \right\}\\
\Rightarrow \sqrt x \in \left\{ { - 1;0;2;3} \right\}\\
\sqrt x \ge 0 \Rightarrow \sqrt x \in \left\{ {0;2;3} \right\} \Rightarrow x \in \left\{ {0;4;9} \right\}\\
d,\\
\dfrac{1}{P} = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}} = \dfrac{{\left( {\sqrt x + 1} \right) - 2}}{{\sqrt x + 1}} = 1 - \dfrac{2}{{\sqrt x + 1}}\\
\sqrt x \ge 0,\,\,\forall x\\
\Rightarrow \sqrt x + 1 \ge 1 \Rightarrow \dfrac{2}{{\sqrt x + 1}} \le \dfrac{2}{1} = 2\\
\Rightarrow \dfrac{1}{P} = 1 - \dfrac{2}{{\sqrt x + 1}} \ge 1 - 2 = - 1\\
\Rightarrow {P_{\min }} = - 1 \Leftrightarrow x = 0
\end{array}\)