Đáp án:
$B.\,\displaystyle\int f(x)dx= \dfrac13(2x-1)\sqrt{2x-1}+ C$
Giải thích các bước giải:
$\quad \displaystyle\int f(x)dx =\displaystyle\int\sqrt{2x-1}dx$
$=\displaystyle\int(2x-1)^{\tfrac12}dx$
$=\dfrac12\cdot\dfrac{(2x-1)^{\tfrac12 +1}}{\dfrac12 +1}+ C$
$=\dfrac{(2x-1)^{\tfrac32}}{3} + C$
$=\dfrac13(2x-1)\sqrt{2x-1}+ C$