A = \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3-5^9.14^3}\)
= \(\dfrac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3-5^9.\left(2.7\right)^3}\)
= \(\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3-5^9.2^3.7^3}\)
= \(\dfrac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}-\dfrac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1-2^3\right)}\)
= \(\dfrac{2}{3.4}-\dfrac{5.6}{7}\)
= \(\dfrac{2}{12}-\dfrac{30}{7}\)
= \(-\dfrac{173}{42}\)
@Trương Gia Kiệt