giúp tớ với:
1, tính tổng các nghiệm của phương trình:
\(\sqrt[3]{x+24}+\sqrt[2]{12-x}=6\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt[3]{x+24}\\b=\sqrt{12-x}\ge0\end{matrix}\right.\Rightarrow a^3+b^2=\left(x+24\right)+\left(12-x\right)=36\)
Kết hợp vs GT ta được \(\left\{{}\begin{matrix}a^3+b^2=36\left(1\right)\\a+b=6\left(2\right)\end{matrix}\right.\)
Từ \(\left(2\right)\Rightarrow b=6-a\) thay vào (1) ta được
\(a^3+\left(6-a\right)^2=36\)
\(\Leftrightarrow a^3+a^2-12a=0\)
\(\Leftrightarrow a\left(a-3\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\) (Nhận hết vì các giá trị của b tương ứng đều >=0)
Từ đó tìm được \(x\in\left\{-88;-24;3\right\}\)
ABC có B(-4;1) trọng tâm G(1;1) đth chứa phân giác trong của góc A d:x-y-1=0 tìm tọa độ đỉnh A, C
cho bất phương trình x2 -2(m+1)x +m+3<0. Với giá trị nào của m thì bất phương trình trên vô nghiệm
cho a,b,c>0 và a+b+c=3 cmr
\(a^3+b^3+c^3+\dfrac{15}{4}abc\ge\dfrac{27}{4}\)
Dùng phương pháp phản chứng minh cho 2 phương trình:
\(\left\{{}\begin{matrix}x^2+ax+b=0\\x^2+cx+d=0\end{matrix}\right.\)
biết rằng \(a.c\ge2\left(b+d\right)\)
Cmr: Ít nhất 1 trong 2 phương trình trên có nghiệm
Cho hình bình hành ABCD có điểm M(-3;0) là trung điểm của AB, Điểm H(0;-1) là hình chiếu của B trên AD, điểm \(G\left(\dfrac{4}{3};3\right)\)là trọng tâm tam giác BCD. Tìm tọa độ đỉnh B và D
Cho ngũ giác đều ABCDE tâm O. Chứng minh: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}=\overrightarrow{0}\)
cho a,b,c>0 và \(a^2+b^2+c^2=3\) cmr
\(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)\ge6\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xyz=1. Chứng minh rằng
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge3\sqrt{3}\)
2) Cho a,b,c là các số dương thỏa mãn điều kiện: a>b; a+b+c=4
Tìm GTNN của biểu thức \(P=4a+3b+\dfrac{c^3}{\left(a-b\right)b}\)
@Ace Legona @TFboys
0.4x\(^2\)- 4x- 1200 = 0
Giải phương trình: -x2 + 2 = \(\sqrt{2-x}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến