Dùng phương pháp phản chứng minh cho 2 phương trình:
\(\left\{{}\begin{matrix}x^2+ax+b=0\\x^2+cx+d=0\end{matrix}\right.\)
biết rằng \(a.c\ge2\left(b+d\right)\)
Cmr: Ít nhất 1 trong 2 phương trình trên có nghiệm
Lời giải:
Giả sử cả 2 pt trên đều không có nghiệm.
Khi đó:
\(\left\{\begin{matrix} \Delta_1=a^2-4b< 0\\ \Delta_2=c^2-4d< 0\end{matrix}\right.\)
\(\Rightarrow a^2+c^2< 4(b+d)\)
Kết hợp với đk: \(ac\geq 2(b+d)\Rightarrow 2ac> a^2+c^2\)
\(\Leftrightarrow a^2+c^2-2ca< 0\Leftrightarrow (a-c)^2< 0\) (vô lý)
Do đó điều giả sử là sai.
Tức là ít nhất 1 trong 2 pt trên phải có nghiệm.
Cho hình bình hành ABCD có điểm M(-3;0) là trung điểm của AB, Điểm H(0;-1) là hình chiếu của B trên AD, điểm \(G\left(\dfrac{4}{3};3\right)\)là trọng tâm tam giác BCD. Tìm tọa độ đỉnh B và D
Cho ngũ giác đều ABCDE tâm O. Chứng minh: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}=\overrightarrow{0}\)
cho a,b,c>0 và \(a^2+b^2+c^2=3\) cmr
\(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)\ge6\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xyz=1. Chứng minh rằng
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge3\sqrt{3}\)
2) Cho a,b,c là các số dương thỏa mãn điều kiện: a>b; a+b+c=4
Tìm GTNN của biểu thức \(P=4a+3b+\dfrac{c^3}{\left(a-b\right)b}\)
@Ace Legona @TFboys
0.4x\(^2\)- 4x- 1200 = 0
Giải phương trình: -x2 + 2 = \(\sqrt{2-x}\)
Cho các số dương x,y,z thỏa mãn \(xy+yz+zx=1\) Chứng minh rằng \(\dfrac{x}{1+yz}+\dfrac{y}{1+zx}+\dfrac{z}{1+xy}\ge\dfrac{3\sqrt{3}}{4}\)
Tìm nghiệm nguyên lớn nhất của bất phương trình: \(\dfrac{x+4}{x^2-9}\)- \(\dfrac{2}{x+3}\)< \(\dfrac{4x}{3x-x^2}\)
\(^{3^{n+2}-2^{n+2}+3^n-2^n⋮10}\)nhanh cần gấp 15 phút
Cho hai số dương a và b thỏa mãn a + b = 1. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến