Đáp án+Giải thích các bước giải:
`B=3(2^2+1)(2^4+1)(2^8+1)......(2^{64}+1)+1`
`=(4-1)(2^2+1)(2^4+1)(2^8+1)......(2^{64}+1)+1`
`=(2^2-1)(2^2+1)(2^4+1)(2^8+1)......(2^{64}+1)+1`
`=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)(2^{64}+1)+1`
`=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)(2^{64}+1)+1`
`=(2^{16}-1)(2^{16}+1)(2^{32}+1)(2^{64}+1)+1`
`=(2^{32}-1)(2^{32}+1)(2^{64}+1)+1`
`=(2^{64}-1)(2^{64}+1)+1`
`=2^{128)+1+1`
`=2^{128}+2`
Vậy `B=2^{128}+2`
HĐT áp dụng :`(a-b)(a+b)=a^2+b^2`
Học tốt nhé~~~