Đáp án:
Giải thích các bước giải:
`Q=((\sqrt{x}+2)/(x+2\sqrt{x}+1)-(\sqrt{x}-2)/(x-1))(x+\sqrt{x})(x>=0;xne1)`
`=((\sqrt{x}+2)/(\sqrt{x}+1)^2-(\sqrt{x}-2)/((\sqrt{x}-1)(\sqrt{x}+1)))(x+\sqrt{x})`
`=([(\sqrt{x}+2)(\sqrt{x}-1)]/[(\sqrt{x}+1)^2(\sqrt{x}-1)]-[(\sqrt{x}-2)(\sqrt{x}+1)]/[(\sqrt{x}+1)^2(\sqrt{x}-1)])(x+\sqrt{x})`
`=([x+\sqrt{x}-2-x+\sqrt{x}+2]/[(\sqrt{x}+1)^2(\sqrt{x}-1)])(x+\sqrt{x})`
`=((2\sqrt{x})/[(\sqrt{x}+1)^2(\sqrt{x}-1)])\sqrt{x}(\sqrt{x}+1)`
`=(2x)/((\sqrt{x}+1)(\sqrt{x}-1))`
`=(2x)/(x-1)`