Đáp án:
 
 
 
Giải thích các bước giải:
 \[\begin{array}{l}
 26.2\cos x(1 - \cos 2x) - \sin 2x = 2\sin x - 1\\
  \Leftrightarrow 4\cos x.si{n^2}x - 2\sin x.\cos x = 2\sin x - 1\\
  \Leftrightarrow 2\sin x.\cos x(2\sin x - 1) - (2\sin x - 1) = 0\\
  \Leftrightarrow (\sin 2x - 1)(2sinx - 1) = 0\\
 27.2\sin x - \sqrt 3  = 0 \Leftrightarrow \sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{array}{l}
 x = \frac{\pi }{3} + k2\pi \\
 x = \frac{{2\pi }}{3} + k2\pi 
 \end{array} \right.\\
 x \in \left( { - 2\pi ;\frac{{3\pi }}{2}} \right) =  > x \in \left\{ {\frac{\pi }{3};\frac{{2\pi }}{3};\frac{{ - 5\pi }}{3};\frac{{ - 4\pi }}{3}} \right\}
 \end{array}\]
 \[\begin{array}{l}
 28.\cos x = \frac{1}{2} =  > x =  \pm \frac{\pi }{3} + k2\pi \\
 x \in \left( { - \pi ;\frac{{5\pi }}{2}} \right) =  > C\\
 29.2\cos x(1 - \cos 2x) - \sin 2x = 2\sin x - 1\\
  \Leftrightarrow 4\cos x.si{n^2}x - 2\sin x.\cos x = 2\sin x - 1\\
  \Leftrightarrow 2\sin x.\cos x(2\sin x - 1) - (2\sin x - 1) = 0\\
  \Leftrightarrow (\sin 2x - 1)(2sinx - 1) = 0\\
  \Leftrightarrow \left[ \begin{array}{l}
 \sin 2x = 1\\
 \sin x = \frac{1}{2}
 \end{array} \right. =  > \left[ \begin{array}{l}
 x = \frac{\pi }{4} + k\pi \\
 x = \frac{\pi }{6} + k2\pi \\
 x = \frac{{5\pi }}{6} + k2\pi 
 \end{array} \right.
 \end{array}\]
 \[\begin{array}{l}
 30.\sin x =  - \frac{{\sqrt 3 }}{2} =  > \left[ \begin{array}{l}
 x =  - \frac{\pi }{3} + k2\pi \\
 x = \frac{{7\pi }}{3} + k2\pi 
 \end{array} \right.\\
 x \in \left( { - 2\pi ;4\pi } \right)
 \end{array}\]
 =>Nghiệm âm lớn nhất : C